skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Salinas, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In humid, continental Michigan, we identified pedogenic carbonate in a soil profile developed on glacial drift sediments, as rinds, rhizoliths, and filaments (at depths >50 cm). Given that the climate setting is unusual for pedogenic carbonate, we investigated its formation with environmental monitoring and isotope analyses of carbonate (δ13C, δ18O, Δ47, and 14C) and waters (δ18O and δ2H). We found covariation in δ13C and Δ47 amongst the carbonate types (rhizoliths, rinds, filaments, bulk soil, and detrital clasts), and 14C ages of rinds that predate plausible formation ages. The δ13C and Δ47 values of the bulk carbonate and some of the pedogenic morphologies are not fully compatible with pedogenic formation in the modern environment. The δ18O data from precipitation and river waters and from carbonates are not uniquely identifying; they are compatible with the soil carbonate being pedogenic, detrital, or a mix. We conclude that the soil carbonate is likely a physical mix of pedogenic and detrital carbonate. Pedogenic carbonate is forming in this humid setting, likely because seasonal cycles in soil respiration and temperature cause cycles of dissolution and re-precipitation of detrital and pedogenic carbonate. The pedogenic carbonate may be a transient feature as carbonate-rich till undergoes post-glacial chemical weathering. 
    more » « less
    Free, publicly-accessible full text available December 9, 2025
  2. ABSTRACT The formation and evolution of local brightest cluster galaxies (BCGs) is investigated by determining the stellar populations and dynamics from the galaxy core, through the outskirts and into the intracluster light (ICL). Integral spectroscopy of 23 BCGs observed out to $$4\, r_{e}$$ is collected and high signal-to-noise regions are identified. Stellar population synthesis codes are used to determine the age, metallicity, velocity, and velocity dispersion of stars within each region. The ICL spectra are best modelled with populations that are younger and less metal-rich than those of the BCG cores. The average BCG core age of the sample is $$\rm 13.3\pm 2.8\, Gyr$$ and the average metallicity is $$\rm [Fe/H] = 0.30\pm 0.09$$, whereas for the ICL the average age is $$\rm 9.2\pm 3.5\, Gyr$$ and the average metallicity is $$\rm [Fe/H] = 0.18\pm 0.16$$. The velocity dispersion profile is seen to be rising or flat in most of the sample (17/23), and those with rising values reach the value of the host cluster’s velocity dispersion in several cases. The most extended BCGs are closest to the peak of the cluster’s X-ray luminosity. The results are consistent with the idea that the BCG cores and inner regions formed quickly and long ago, with the outer regions and ICL forming more recently, and continuing to assemble through minor merging. Any recent star formation in the BCGs is a minor component, and is associated with the cluster cool core status. 
    more » « less